

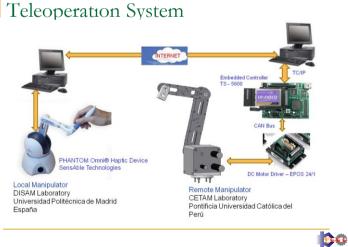
Julio C. Tafur¹, M. Sc. Doctoral Candidate Engineering Department - CETAM, PUCP, Lima, PERU

Cecilia García, PhD Rafael Aracil, PhD Roque Saltaren, PhD Centre for Automation and Robotics UPM- CSIC, Madrid, SPAIN

12th International Workshop on Research and Education in Mechatronics - REM 2011 15-16 September 2011, Kocaeli, Turkey

¹ Fellowship – Fundación Carolina, Spain

100 CETAM

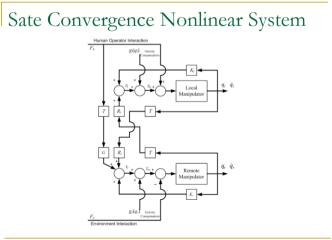

Goal

□ The goal of this work is to develop the bilateral control of a nonlinear teleoperator system with constant delay, it is proposed a control strategy for state convergence applied to nonlinear systems.

Contents

- Goal
- Manipulator Dynamic Model
- Sate Convergence Nonlinear System
- Conclusions
- Future work

CETAM


1

Manipulator Dynamic Model

$$\begin{split} \mathbf{M}_{1}(\mathbf{q}_{1})\ddot{\mathbf{q}}_{1} + \mathbf{C}_{1}(\mathbf{q}_{1},\dot{\mathbf{q}}_{1})\dot{\mathbf{q}}_{1} + \mathbf{g}_{1}(\mathbf{q}_{1}) &= \boldsymbol{\tau}_{1c} + \mathbf{F}_{h} \\ \mathbf{M}_{r}(\mathbf{q}_{r})\ddot{\mathbf{q}}_{r} + \mathbf{C}_{r}(\mathbf{q}_{r},\dot{\mathbf{q}}_{r})\dot{\mathbf{q}}_{r} + \mathbf{g}_{r}(\mathbf{q}_{r}) &= \boldsymbol{\tau}_{rc} - \mathbf{F}_{e} \end{split}$$

Inertia Matrix **M**, coriolis and centrifugal matrix forces **C**, gravity forces matrix **g** are definde by:

$$\mathbf{M}_{1} = \mathbf{M}_{r} = \mathbf{M} = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix}, \mathbf{C}_{1} = \mathbf{C}_{r} = \mathbf{C} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}$$
$$\mathbf{g}_{1} = \mathbf{g}_{r} = \mathbf{g} = \begin{bmatrix} g_{1} \\ g_{2} \\ g_{3} \end{bmatrix}$$

Interaction of the human operator with the local handle

 $\mathbf{F}_{h} = \mathbf{F}_{op}$ \mathbf{F}_{op} is a constant vector $\in \mathbf{R}^{n}$

The interaction of the environment with the remote manipulator

 $\mathbf{F}_{\mathrm{e}} = \mathbf{K}_{\mathrm{e}}\mathbf{q}_{\mathrm{r}} + \mathbf{B}_{\mathrm{e}}\dot{\mathbf{q}}_{\mathrm{r}}$

 $\textbf{K}_{e},\,\textbf{B}_{e} \text{ are definite positive matrix } \in \textbf{R}^{(\textit{nxn})}$

Compensation of gravitational forces

 $\boldsymbol{\tau}_{\rm lc} = \boldsymbol{\tau}_{\rm l} + \boldsymbol{g}_{\rm l} \big(\boldsymbol{q}_{\rm l} \big), \quad \boldsymbol{\tau}_{\rm rc} = \boldsymbol{\tau}_{\rm r} + \boldsymbol{g}_{\rm r} \big(\boldsymbol{q}_{\rm r} \big)$

 $\mathbf{M}_{1}(\mathbf{q}_{1})\ddot{\mathbf{q}}_{1} + \mathbf{C}_{1}(\mathbf{q}_{1}, \dot{\mathbf{q}}_{1})\dot{\mathbf{q}}_{1} = \mathbf{\tau}_{1} + \mathbf{F}_{op}$

 $\mathbf{M}_{r}(\mathbf{q}_{r})\dot{\mathbf{q}}_{r} + \mathbf{C}_{r}(\mathbf{q}_{r},\dot{\mathbf{q}}_{r})\dot{\mathbf{q}}_{r} = \mathbf{\tau}_{r} - \mathbf{F}_{e}$

State Covergence Control Law

 $\begin{aligned} \mathbf{\tau}_{1} &= \mathbf{K}_{11}\mathbf{q}_{1} + \mathbf{K}_{12}\dot{\mathbf{q}}_{1} + \mathbf{R}_{11}\mathbf{q}_{r}(t-T) + \mathbf{R}_{12}\dot{\mathbf{q}}_{r}(t-T) \\ \mathbf{\tau}_{r} &= \mathbf{K}_{r1}\mathbf{q}_{r} + \mathbf{K}_{r2}\dot{\mathbf{q}}_{r} + \mathbf{R}_{r1}\mathbf{q}_{1}(t-T) + \mathbf{R}_{r2}\dot{\mathbf{q}}_{1}(t-T) + G_{2}\mathbf{F}_{aa}(t-T) \end{aligned}$

 $\mathbf{K}_{1} = [\mathbf{K}_{11} \quad \mathbf{K}_{12}]_{\mathbf{R}} \mathbf{R}_{1} = [\mathbf{R}_{11} \quad \mathbf{R}_{12}]_{\mathbf{K}} \mathbf{K}_{r} = [\mathbf{K}_{r1} \quad \mathbf{K}_{r2}]_{\mathbf{R}} \mathbf{R}_{r} = [\mathbf{R}_{r1} \quad \mathbf{R}_{r2}]$ Where $\mathbf{K}_{\mathbf{h}} \mathbf{R}_{\mathbf{h}} \mathbf{K}_{r2} \mathbf{R}_{r}$ are matrices $\in \mathbf{R}^{(mm)} \quad \mathbf{G}_{2}$ is a constant

Dynamics of bilateral teleoperation in closed-loop system

Defining new position variables: $\widetilde{\mathbf{q}}_{l}(t) = \mathbf{q}_{l}(t) - \overline{\mathbf{q}}_{l}$ $\widetilde{\mathbf{q}}_{r}(t) = \mathbf{q}_{r}(t) - \overline{\mathbf{q}}_{r}$

 $\mathbf{M}_{1}\ddot{\widetilde{\mathbf{q}}}_{1} + \mathbf{C}_{1}\dot{\widetilde{\mathbf{q}}}_{1} = \mathbf{K}_{11}\widetilde{\mathbf{q}}_{1} + \mathbf{R}_{11}\widetilde{\mathbf{q}}_{r}(t-T) + \mathbf{K}_{12}\dot{\widetilde{\mathbf{q}}}_{1} + \mathbf{R}_{12}\dot{\widetilde{\mathbf{q}}}_{r}(t-T)$

 $\mathbf{M}_{r}\ddot{\mathbf{\tilde{q}}}_{r} + \mathbf{C}_{r}\dot{\mathbf{\tilde{q}}}_{r} = \mathbf{K}_{r1}\mathbf{\tilde{q}}_{r} + \mathbf{R}_{r1}\mathbf{\tilde{q}}_{1}(t-T) + \mathbf{K}_{r2}\dot{\mathbf{\tilde{q}}}_{r} + \mathbf{R}_{r2}\dot{\mathbf{\tilde{q}}}_{1}(t-T) - \mathbf{K}_{e}\mathbf{\tilde{q}}_{r} - \mathbf{B}_{e}\dot{\mathbf{\tilde{q}}}_{r}$

Theorem¹: For the nonlinear bilateral teleoperation close loop system, making the following considerations:

 $K_{11} = -K$, $K_{12} = -3K_1$, $K_{r1} = -K$, $R_{12} = 2K_1$

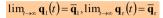
$$\mathbf{R}_{11} = \mathbf{K}, \quad \mathbf{K}_{r2} = -3\mathbf{K}_{1}, \quad \mathbf{R}_{r1} = \mathbf{K}, \quad \mathbf{R}_{r2} = 2\mathbf{K}_{1}$$

Where \mathbf{K}_1 y \mathbf{K} are positive definite constant diagonal matrices. If the following is satisfied :

 $\mathbf{K}_{1} - \frac{\alpha_{1}}{2}\mathbf{K} - \frac{T^{2}}{2\alpha_{2}}\mathbf{K} > \mathbf{0}, \quad \mathbf{K}_{1} - \frac{\alpha_{2}}{2}\mathbf{K} - \frac{T^{2}}{2\alpha_{1}}\mathbf{K} > \mathbf{0}$

Where α_1 , α_2 and *T* are scalar constants, then:

$$\lim_{t\to\infty}\widetilde{\mathbf{q}}_1 = \lim_{t\to\infty}\widetilde{\mathbf{q}}_r = \lim_{t\to\infty}\dot{\widetilde{\mathbf{q}}}_1 = \lim_{t\to\infty}\dot{\widetilde{\mathbf{q}}}_r = \mathbf{0}$$


¹ For stability analysis Lyapunov-Krasovskii was used

Therefore the origin of the system

 $\dot{\widetilde{\mathbf{q}}}_{1}, \dot{\widetilde{\mathbf{q}}}_{r}, \widetilde{\mathbf{q}}_{1}, \widetilde{\mathbf{q}}_{r}$

is asymptotically stable and

This guarantees the stability of the teleoperation system!!!

Position Coordination- Local and Remote Manipulator

lf

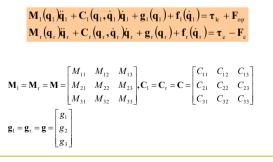
 $\mathbf{F}_{_{\mathrm{op}}}=\mathbf{F}_{_{\mathrm{e}}}=\mathbf{0}$

Then

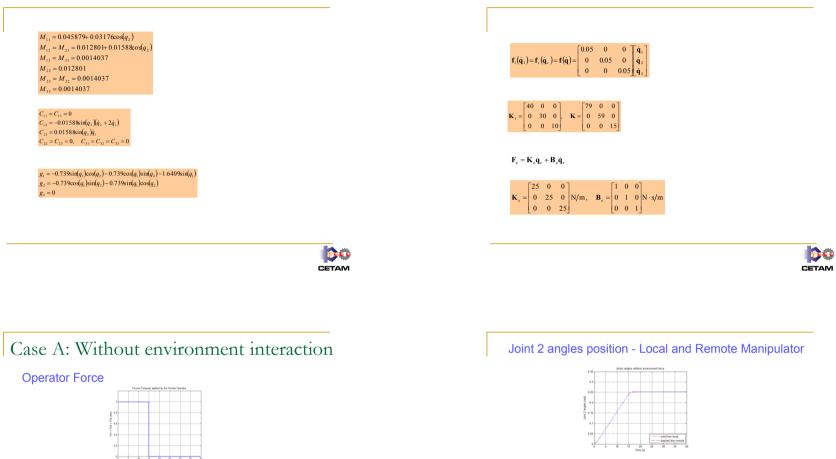
$\overline{\mathbf{q}}_1 - \overline{\mathbf{q}}_r = \mathbf{0}$

This implies that the equilibrium points of the local and remote manipulator are identical

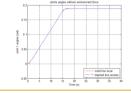
 $\widetilde{\mathbf{q}}(t) = \mathbf{q}_{1}(t) - \mathbf{q}_{r}(t)$

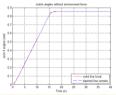

$\lim_{t\to\infty}\widetilde{\mathbf{q}}(t) = \lim_{t\to\infty} (\mathbf{q}_1(t) - \mathbf{q}_r(t)) = \mathbf{0}$

Then, there is positions coordination between the local and remote manipulator

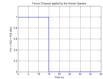


Simulation

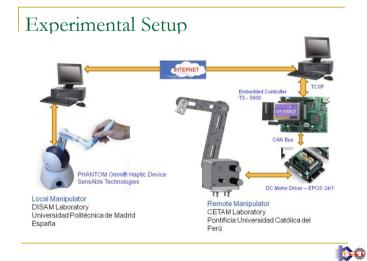

Simulation were performer using Matlab[™] and Simulink[®] for an identical local and remote manipulator of three degrees of freedom.

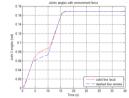


Joint 1 angles position - Local and Remote Manipulator

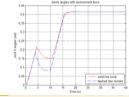

Joint 3 angles position - Local and Remote Manipulator

Case B: With Environment Interaction


Operator Force


Joint 1 angles position - Local and Remote Manipulator

	0.14	Jointos angles with environment faice							
(Jath anges 1 mich				1	_				
	0.12								
				78					
	0.1			/					
			1/						
	0.03		i <i>d</i>						
			1						
	0.05								
		1							
	0.64	1							
	0.02	7							
									_
						-		ne local	1
							- dashe	d line rem	ote
	-0.02	5	10	15	20	25	30	35	40
					Time (s)				


CETAM

Joint 2 angles position - Local and Remote Manipulator

Joint 3 angles position - Local and Remote Manipulator

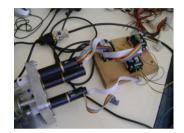
- Human operator interacts physically with a haptic device which reflects the forces of the environment as well as the interaction forces.
- The computer processes the information from the haptic device and sensors (force and encoders) in order to send signals of control towards a PC104 card.
- Communication between the computer and the PC104 card is done through a router using the UDP Protocol (User Datagram Protocol).
 - The PC104 card in controls the motors trough CAN Network (Controller Area Network)

Remote Manipulator Arm

- Remote manipulator is three degrees of freedom planar serial manipulator.
- The actuator system consists of the electric brushless DC motors and power drivers EPOS 24/1.

Local Manipulator Arm

- Local side uses a haptic device PHANTOM Omni® from SensAble Technologies as local manipulator.
- remote arm reproduces the movements of the operator on this device.


Internet Communications

- In this control systems implementation, the UDP protocol will be used.
 - UDP is commonly applied to the transmission of low level commands. These commands are related to low-level control robot movements which demand different network requirements.

Motion Control Board EPOS 24/1

- Maxon motor EPOS 24/1 is a digital motion controller.
 - Devices EPOS used the CANopen Protocol.
 - The individual devices in the network are commanded by the CANopen master.

Conclusions

- Considering a constant delay, when the local and remote manipulator are coupled using an control algorithm's of state convergence, developed analysis shows the stability of the nonlinear teleoperation system both local and remote, and moreover follow-up of position
- This article has presented the study of bilateral control of the nonlinear teleoperator system when the human operator applies a constant force on the local manipulator and the interaction of the remote manipulator with the environment is considered to be passive.
- We performed some simulations that validate the theoretical results of this paper.

Future Work

Thanks!!!

Experimental results are currently under way and will be reported in the near future.

Julio C. Tafur, M.Sc. jtafur@pucp.edu.pe Centro de Tecnologías Avanzadas de Manufactura CETAM